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We prove that if the initial condition of the Swift–Hohenberg equation

“tu(x, t)=(E2−(1+“
2
x)
2) u(x, t)−u3(x, t)

is bounded in modulus by Ce−bx as xQ+., the solution cannot propagate to
the right with a speed greater than

sup
0 < c [ b

c−1(E2+4c2+8c4).

This settles a long-standing conjecture about the possible asymptotic propa-
gation speed of the Swift–Hohenberg equation. The proof does not use the
maximum principle and is simple enough to generalize easily to other equations.
We illustrate this with an example of a modified Ginzburg–Landau equation,
where the critical speed is not determined by the linearization alone.

KEY WORDS: Partial differential equations; fronts.

1. INTRODUCTION

The marginal stability conjecture deals with the possible propagation speed
of solutions of dissipative partial differential equations. It was formulated



in the late 1970’s by several authors. Its clearest form is obtained for the
Ginzburg–Landau equation

“tu(x, t)=“
2
xu(x, t)+u(x, t)−u

3(x, t), (1.1)

where u: R×R+Q R. When the initial data have compact support, then the
solution cannot propagate with a speed faster than some critical speed c,
which happens to be 2 for this example. The number 2 can be understood
as follows. One writes u(x, t)=v(x−ct), and looks for a solution of (1.1)
expressed for v:

0=“2tv+c “tv+v−v
3. (1.2)

If one makes the assumption that v(t)=C1e−bt as tQ+., one finds that
b and c should be related through the equation

0=b2−bc+1, (1.3)

since the non-linear term is irrelevant at t=. in this case. For fixed b
we clearly find c=(b2+1)/b, and since functions which are (in absolute
value) bounded by C exp(−bx) are also bounded by CŒ exp(−bŒx) for
0 < bŒ < b one finds in this case an upper bound

cGLb = inf
0 < c < b

c2+1
c
, (1.4)

and this is equal to 2 for b \ 1. Using the maximum principle for parabolic
PDE’s, Aronson and Weinberger were able to show (1) that no positive
solution starting from initial conditions with compact support can move
faster than the speed cGL2 =2. Using essentially the same argument, it was
also shown in ref. 2 that if the initial condition decays like e−bx with b < 1,
then the solution cannot move faster than cGLb . However, in cases where the
maximum principle does not apply, such as in (1.5), the maximum possible
speed was only conjectured, and tested numerically, but no rigorous result
was obtained, see, e.g., refs. 3–5. Further, more modern, references are refs.
6 and 7.
In a somewhat different direction, there is the important, and difficult,

issue on whether there is actually a solution moving with the maximal
allowed velocity. In general, its realization depends on the details of the
nonlinearity, and this question has been extensively discussed in the litera-
ture. (1, 4, 5, 8, 9) It will not be treated here.
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The main result of our paper is an upper bound on the speed of prop-
agation of solutions to the Swift–Hohenberg equation

“tu=(E2−(1+“
2
x)
2) u−u3. (1.5)

The polynomial equation analogous to (1.3) turns out to be

0=E2+4b2+8b4−cb, (1.6)

and we define in this case

cb=c
SH
b = inf

0 < c [ b

E2+4c2+8c4

c
. (1.7)

The polynomial is an absolute maximum of the real part of the polynomial
P(x)=E2−(1+x2)2, as we explain at the end of the introduction and in the
Appendix. This will be the minimal speed.4 Our result can be expressed

4While it looks different from the standard discussion in ref. 5, we explain in the Appendix
that the two definitions coincide. The current formulation has the advantage of being
expressed in terms of real variables, although the traveling wave in this case is actually
modulated. (2)

informally as follows: If the initial data for the problem are bounded in
absolute value by Ce−bx as xQ+. then the solution cannot advance faster
to the right than cb in the sense that

lim
tQ.
u(x+ct, t)=0,

for all c > cb. In particular, if the initial condition has compact support, the
above hypotheses are satisfied for any b > 0 and we find an upper bound on
the speed which is cg=infb cb: This is the absolute minimum of (E2+4b2

+8b4)/b.

Remark. The precise formulation is given in Theorem 4.1.

Before explaining the main steps of the proof we note a well-known
result, (10) namely that if the initial condition u0 is bounded in C3, i.e.,

max
j=0,..., 3

sup
x ¥ R
|“ jxu0(x)| [K, (1.8)

then there is a constant L=L(K) such that for all t > 0 one has

max
j=0,..., 3

sup
x ¥ R
|“ jxu(x, t)| [ L(K). (1.9)
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The proof of the main result is really quite easy and consists of 3 steps:

(i) An a priori bound on the Green’s function of the semigroup
generated by the linear part E2−(1+“2x)

2 of the Swift–Hohenberg equa-
tion.

(ii) The observation that if the initial condition satisfies limxQ. ebx

“
j
xu0(x)=0, for j=0,..., 3, then the same holds for u(x, t). This is needed
later on to ensure that integration by parts does not produce boundary
terms at infinity.

(iii) An energy-like estimate which shows that

lim
tQ.

F
.

ct
dx |u(x, t)|2 e2b(x−ct)=0,

when c > cb (if it is finite at t=0, see below for details). Thus, the solution
is outrun by a frame moving with speed c > cb. In the case of second order
problems, this is a well-known consequence of the maximum principle, see,
e.g., ref. 2. In our context, where the maximum principle cannot be applied,
we show that this phenomenon has a different origin of dynamical nature.

In Section 5, we consider the case of the Ginzburg–Landau equation
when the nonlinearity u−u3 is replaced by a general function f(u) with the
properties f(0)=0, 0 < fŒ(0) <. and lim supzQ.f(z)/z < 0. In such a
case, the bound (1.4) is replaced by

cGLŒb = inf
0 < c < b

c2+supu
f(u)
u

c
.

In the case of the Swift–Hohenberg equation the bound generalizes as
follows: Assume the equation is

“tu=(E2−(1+“
2
x)
2)) u+f(u).

Then we get for the maximal possible speed:

cSHŒb = inf
0 < c [ b

E2+4c2+8c4+supu
f(u)
u

c
.

In an appendix, we show that the expression (1.7) is nothing but

sup
kb*
Re P(z)|z=−b+ikb*,
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where the sup is over the solutions kgb of

d Re P(−b+ik)
dk

=0.

We also show that these conditions are the same as those found in ref. 5.
Finally, it should be noted that the method is not restricted to

1-dimensional problems, and can also be applied to questions of growth
of ‘‘bubbles’’ in the 2-dimensional Swift–Hohenberg equation.

2. A POINTWISE BOUND ON THE GREEN’S FUNCTION

Here we bound the Green’s function of the operator E2−(1+“2x)
2 by a

method which generalizes immediately to other problems of similar type.
Let P be a polynomial in k which is of the form

P(ik)=−ankn+ C
n−1

m=0
amkm — −ankn+R(k),

and assume n even and an > 0. (For the Swift–Hohenberg equation, P(z)=
E2−(1+z2)2.) Then the Green’s function

Gt(x)=F dk e ikxeP(ik) t,

satisfies:

Lemma 2.1. Given 0 < b <., there is a constant C(b) such that
for all t ¥ (0, 1] one has the bound

t1/n |Gt(x)| e (bŒ+2t
−1/n) |x| [ C(b), (2.1)

for all bŒ ¥ [0, b].

Remark. This clearly also implies, for all t ¥ (0, 1] and all bŒ ¥
[0, b]:

F dx |Gt(x)| ebŒ |x| [ C(b), (2.2)

since > dx |Gt(x)| ebŒ |x| [ C(b) > dx t−1/ne−2 |x| t
−1/n

[ C(b).

Proof. We will show the bound in the form

t1/n |Gt(zt1/n)| ect
1/nz [ C(b), (2.3)
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with c=b+2t−1/n, and it clearly suffices to consider z > 0. Proving (2.3) is
a straightforward calculation which is probably well-known. Indeed, the
l.h.s. of (2.3) equals (without the absolute values)

F dk t1/n exp(ct1/nz+ikt1/nz−anknt+R(k) t)

=F da exp(ct1/nz+iaz−anan+R(at−1/n) t).

Since the integrand is an entire function in a we can shift the contour from
a to aŒ=a−ict1/n and the last expression is seen to be equal to

F daŒ exp(iaŒz−an(aŒ+ict1/n)n+R(aŒt−1/n+ic) t).

Note now that

|exp(iaŒz−an(aŒ+ict1/n)n+R(aŒt−1/n+ic) t)|

=|exp(−an(aŒ+ict1/n)n+R(aŒt−1/n+ic) t)|, (2.4)

and for bounded b and t ¥ (0, 1] we find that ct1/n=(b+2t−1/n) t1/n [
b+2, and hence (2.4) is uniformly integrable in aŒ, since an > 0. The proof
of Lemma 2.1 is complete. L

3. EXPONENTIAL DECAY OF SOLUTIONS

In this section, we prove a bound in the laboratory frame, showing
that if the initial condition goes exponentially to 0 then the solution at time
t goes to zero as well, with the same rate.

Theorem 3.1. Assume that u0 is bounded in C3 and that

lim
xQ.
ebx “ jxu0(x)=0, (3.1)

for j=0,..., 3 and some b > 0. Then the solution u(x, t) of (1.5) with initial
data u0 satisfies for all t > 0:

lim
xQ.
ebx “ jxu(x, t)=0, (3.2)

for j=0,..., 3.
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Proof. The proof is in steps of some (fixed) time yg. We define first

gt(x)=1+eb(x−t).

The assumption means that u0 satisfies (1.8) for some K. From (3.1), and
because L(K) \K, we conclude that there is a t > 0 for which

sup
x ¥ R
gt(x) |“

j
xu0(x)| [ 2K [ 2L(K), (3.3)

for j=0,..., 3. Note that we do not have any control on the size of t, but
such a control is not needed.
From (1.8) we also conclude (see (1.9)) that

sup
t \ 0
sup
x ¥ R
|“ jxu(x, t)| [ L(K), (3.4)

for j=0,..., 3.
The crucial step in the proof of Theorem 3.1 is

Lemma 3.2. There are a yg > 0 and a r, independent of t, such that
for t ¥ [0, yg] one has

sup
j=0,..., 3

sup
x ¥ R
gt(x) |“

j
xu(x, t)| [ r. (3.5)

Proof. We use the estimates on the convolution kernel Gt associated
with the semigroup tW exp(t(E2−(1+“2x)

2) which were proven in Section 2.
One has

ut=Gt a u0−F
t

0
ds Gt−s a u3s ,

where us(x)=u(x, s). We define Bt as the space of uniformly continuous
functions f for which

||f||t=sup
x ¥ R
gt(x) |f(x)| <..

Using this quantity as a norm makes Bt a Banach space. Consider next
the space K=Kt, y

*
=C0([0, yg], Bt) of functions h: (x, t)W h(x, t), with

h(x, 0)=0, and with the norm

||h||t, y
*
= sup
t ¥ [0, y

*
]
||h( · , t)||t.
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This is again a Banach space. For v ¥K we define the map vW Qv by

(Qv)(x, t)=(Gt a u0)(x)−u0(x)−F
t

0
ds(Gt−s a (vs+u0)3)(x). (3.6)

Note that if Qv=v, then v(x, t)+u0(x) is a solution to (1.5) with initial
condition u0. To find v, we will show that for sufficiently small yg > 0 the
operator Q contracts a ball of Kt, y

*
to itself. The center of this ball is the

function (x, t)W 0.
First we bound Gt a u0. Note that from the definition of gt we find

gt(x)
gt(y)

[ eb |x−y|,

since for x < y the quotient is bounded by 1 and for x > y we have the
(very rough) bound eb(x−y). From Lemma 2.1, we have for all t ¥ (0, 1] and
all x ¥ R:

|Gt(x)| e2b |x| [ C(b) t−1/4e−2 |x|t
−1/4
, (3.7)

and, clearly, C(b) can be chosen the same value for all smaller b. Using
this, we find

|(Gt a u0)(x) gt(x)| [ F dy |Gt(x−y) u0(y)| gt(y)
gt(x)
gt(y)

[ F dy |Gt(x−y) u0(y)| gt(y) eb |x−y|

[ F dz |Gt(z) eb |z|| sup
zŒ ¥ R
|u0(zŒ)| gt(zŒ)

[ C(b) sup
zŒ ¥ R

|u0(zŒ)| gt(zŒ). (3.8)

Combining these bounds with (3.3) we get

|(Gt a u0)(x) gt(x)| [ C2L(K).

In fact, we can do a little better in (3.8) by extracting a factor of e−b |x−y|.
The last two lines in (3.8) are replaced by

|(Gt a u0)(x) gt(x)| [ F dz |Gt(z) e2b |z|| sup
y ¥ R
|u0(y)| gt(y) e−b |x−y|

[ C(2b) sup
y ¥ R

|u0(y)| gt(y) e−b |x−y|. (3.9)
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Since |u0(y)| gt(y) is bounded and converges to 0 as yQ+., we conclude
that the quantity in (3.9) tends to 0 as xQ+.. Thus, we also have

lim
xQ.
|(Gt a u0)(x) gt(x)|=0. (3.10)

We next bound the non-linear term. Let û0(x, t)=u0(x). Assume
v ¥Kt, y

*
and ||v+û0 ||t, y

*
< r. Then for any power ( \ 1) of v+û0 one has a

bound of the form

||(v+û0)3||t, y
*
[ C3r3.

Therefore, the method leading to (3.8) now yields

:F t
0
ds(Gt−s a (vs+u0)3)(x) gt(x) : [ C4r3t,

and if also ||w+û0 ||t, y
*
< r, then a variant of that method gives:

:F t
0
ds(Gt−s a (vs+u0)3)(x) gt(x)−F

t

0
ds(Gt−s a (ws+u0)3)(x) gt(x) :

[ C5r2t sup
s ¥ [0, t]

sup
x ¥ R

|vs(x)−ws(x)| gt(x).

Taking the center of the ball at (x, t)W 0 and the radius r=2C2K and
then yg <min{(4C4r3)−1, (4C5r2)−1}, we have a contraction and hence a
unique fixed point v for Q. For j=1, 2, 3, we use the same methods since
we can push all derivatives from the operator Gt to the function v, because
Gt a is a convolution. The details are left to the reader. The existence of
this fixed point clearly shows Lemma 3.2. L

We come back to the proof of Theorem 3.1. We define

C(t)=lim sup
xQ.

|u(x, t) gt(x)|.

By assumption, we have C(0)=0 and by Lemma 3.2 we have

|u(x, t)| [ r/gt(x),

so that C(t) [ r for t [ yg. We now show it is actually 0 for those t.
Consider Q as in (3.6). Note that

C(t)=lim sup
xQ.

|u(x, t) gt(x)|

=lim sup
xQ.

gt(x) |(Gt a u0)(x)|+lim sup
xQ.

gt(x) :F
t

0
ds(Gt−s a u3s )(x) : .
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The first term vanishes by (3.9). Thus, C only depends on the nonlinear
part. Using (3.7), that part can be bounded as

gt(x) :F
t

0
ds Gt−s a u3s (x) : [ F

t

0
ds F dy

gt(x)
g3t(y)

|Gt−s(x−y)| |gt(y) us(y)|3

[ F
t

0
ds F dy |Gt−s(x−y)| eb |x−y| |gt(y) us(y)|3

[ C(b) F
t

0
ds F dz(t−s)−1/4 e−2 |z| (t−s)

−1/4

· |gt(x−z) us(x−z)|3. (3.11)

We need an upper bound for the lim supxQ. of this expression. Fix an
E > 0. For s ¥ [0, t], we can find an g(s, E) > 0 such that

sup
y \ g(s, E)

|gt(y) us(y)| [ C(s)+E .

There is also a number z(E) > 0 such that for any s ¥ [0, t]:

F
|z| > z(E)

dz(t−s)−1/4 e−2 |z| (t−s)
−1/4

[ E.

If x > z(E)+g(s, E), we have

F dz (t−s)−1/4 e−2 |z| (t−s)
−1/4
|gt(x−z) us(x−z)|3 [ (C(s)+E)3+r3E,

by Lemma 3.2. We cannot conclude directly by integration over s because g
depends on s. However, g(s, E) is finite for almost every s (in reality for
every s). Therefore, we can find a finite number G(E) such that the set

E(E)={s ¥ [0, t] | g(s, E) > G(E)}

has Lebesgue measure at most E (note that E(E) is measurable). Therefore,
if x > G(E)+z(E) we have

F
t

0
ds F dz(t−s)−1/4 e−2 |z| (t−s)

−1/4
|gt(x−z) us(x−z)|3

=F
([0, t]0E(E)) 2 E(E)

ds F dz(t−s)−1/4 e−2 |z| (t−s)
−1/4
|gt(x−z) us(x−z)|3

[ C6 F
t

0
ds((C(s)+E)3+r3E)+C7r3 F

E(E)
ds.
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The last integral is of order E. Since E > 0 is arbitrary, we get

C(t) [ C8 F
t

0
ds C(s)3.

Since C is bounded by what we said above and C(0)=0, it follows from
Gronwall’s lemma that C(t)=0 for t [ yg. One then repeats the argument
for all consecutive intervals of length yg. The proof of the corresponding
bounds on the derivatives is similar and is left to the reader. L

4. BOUND ON THE SPEED

We define Jt by

Jt(t)=F
.

t

dx |u(x, t)|2 e2b(x−t), (4.1)

where u(x, t) is the solution of the Swift–Hohenberg equation. The main
result of this paper is

Theorem 4.1. Let u(x, t) be a solution of the Swift–Hohenberg
equation (1.5) for an initial condition u0(x)=u(x, 0) which is in B, which
satisfies J0(0) <. for some b > 0 and which satisfies the assumptions of
Theorem 3.1. Then one has

lim
tQ.

F
.

ct
dx |u(x, t)|2 e2b(x−ct)=0, (4.2)

for all c > (E2+4b2+8b4)/b.

Remark. If one is willing to pay a price of slightly more complicated
formulations and proofs, one can omit the condition on J0(0) in Theorem 4.1.
One would then assume the pointwise bounds of Theorem 3.1 fore some b > 0
and work throughout the proof with a Jt(t) defined with some bŒ < b, but
arbitrarily close to it, since the condition on c is open.

Proof. We define vt(x, t)=u(x, t) eb(x−t), so that Jt(t)=>.t dx
|vt(x, t)|2, and vt solves the equation

“tvt(x, t)=E2vt(x, t)−(1+(“x−b)2)2 vt(x, t)−v
3
t(x, t) e

−2b(x−t). (4.3)
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Since u is real, the absolute values in the definition of Jt(t) can be omitted.
Differentiating (4.1) with respect to time, we get

1
2 “tJt(t)=F

.

t

dx vt(x, t) “tvt(x, t).

Since t is fixed throughout the calculation, we omit the index of vt. We
also omit the arguments (x, t). Note that by Theorem 3.1, limxQ. “

j
xvt(x, t)

=0, for j=0,..., 3, so that we can freely integrate by parts in the following
calculation. We find, using “xv=vŒ:

1
2 “tJt(t)=F

.

t

dx v(E2v−(1+(“x−b)2)2 v−v3e−2b(x−t))

=F
.

t

dx v(E2v−(1+“2x−2b“x+b
2)2 v−v3e−2b(x−t))

=F
.

t

dx v(E2v−“4xv+4b “
3
xv−2(1+3b

2) “2xv

+4b(1+b2) “xv−(1+b2)2 v−v3e−2b(x−t))

=F
.

t

dx ((E2−(1+b2)2) v2−e−2b(x−t)v4−2(1+3b2) vvœ

+vŒv'−−4bvŒvœ)+(vv'−−4bvvœ−2b(1+b2) v2)|x=t, t.

We integrate by parts some more and get

1
2 “tJt(t)=F

.

t

dx((E2−(1+b2)2) v2−e−2b(x−t)v4−2(1+3b2) vœv−(vœ)2)

+(vv'−−4bvvœ−2b(1+b2) v2−vŒvœ+2b(vŒ)2)|x=t, t. (4.4)

We write Bt(t) for the boundary term obtained above:

Bt(t)=(vv'−−4bvvœ−2b(1+b2) v2−vŒvœ+2b(vŒ)2)|x=t, t.

Finally, we rewrite (4.4) by completing a square:

1
2 “tJt(t)=F

.

t

dx ((E2−(1+b2)2+(1+3b2)2) v2−e−2b(x−t)v4

−(vœ+(1+3b2) v)2)+Bt(t). (4.5)
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Note that (4.5) leads immediately to a differential inequality:

1
2 “tJt(t) [ G(b) Jt(t)+Bt(t), (4.6)

with

G(b)=E2−(1+b2)2+(1+3b2)2=E2+4b2+8b4. (4.7)

This is the origin of the polynomial in (1.7). We bound first the boundary
term.

Lemma 4.2. There is a C9 such that for all u0 ¥B, all t, and all
t > 0 one has

Bt(t) [ C9. (4.8)

Proof. Recall that vt(x, t)=eb(x−t)u(x, t). Using elementary calculus,
we find

“
j
xvt(x, t)=C

j

k=0

1 j
k
2 b jeb(x−t) “ j−kx u(x, t).

Therefore,

“
j
xvt(t, t)=C

j

k=0

1 j
k
2 b j “ j−kt u(x, t)|x=t,

and the assertion follows because u ¥B.
Using Lemma 4.2, we conclude from (4.6) that

“tJt(t) [ 2G(b) Jt(t)+2C9.

Solving the differential inequality from t to tŒ, we obtain for tŒ > t,

Jt(tŒ) [ e2G(b)(tŒ−t)Jt(t)+2
e2G(b)(tŒ−t)−1
2G(b)

C9. (4.9)

We need this inequality in a slightly different form. Note that for tŒ > t,
one has

JtŒ(t)=F
.

tŒ

dx u2(x, t) e2b(x−tŒ)=e−2b(tŒ−t) F
.

tŒ

dx e2b(x−t)u2(x, t)

[ e−2b(tŒ−t) F
.

t

dx e2b(x−t)u2(x, t)

=e−2b(tŒ−t)Jt(t). (4.10)
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Combining this with (4.9) we get for tŒ > t and tŒ > t:

JtŒ(tŒ) [ e−2b(tŒ−t) 1e2G(b)(tŒ−t)Jt(t)+
e2G(b)(tŒ−t)−1
G(b)

C9 2 . (4.11)

To complete the proof of Theorem 4.1, it suffices to set tŒ=cy, tŒ=y, t=0
and t=0 in (4.11). Then we get

Jcy(y) [ e2(G(b)−bc) y 1J0(0)+
C9
G(b)
2 . (4.12)

Clearly, if c > G(b)/b, then Jcy(y)Q 0 as yQ.. Thus, if J0(0) <. the
assertion of Theorem 4.1 follows. L

Remark. One can do a little better than (4.12). Namely, consider the
case where c=G(b)/b, that is, the case of a critical speed. Then one finds
from (4.11) that

Jcy+l(y) [ e−2bl 1J0(0)+
C9
G(b)
2 ,

and in particular limlQ. Jcy+l(y)=0, if J0(0) is finite. This means that in
the frame moving with exactly the critical speed, no amplitude ‘‘leaks’’ far
ahead in that frame in L2(e2bx dx). One can compare this with the results
of Bramson (8) who showed (for positive solutions of the Ginzburg–Landau
equation) that such a leakage is only possible if the initial data decay
like e−xxa with a > 1. In that case, he gets positive amplitudes at
ct+(a−1) log t. Note that the condition J0(0) <. can only hold for
a < − 12 , and then the correction term will push the amplitude behind the
position of ct. Thus, in the case of the Ginzburg–Landau equations the two
results are consistent.

5. AN EXAMPLE OF A NON-LINEAR VELOCITY BOUND

Consider the semi-linear parabolic equation

“tu=P(“x) u+f(u), (5.1)

where P is a real polynomial, Re P(ik) diverges to −. as |k|Q. and
Im(ik) is a polynomial of lower order.5 We also assume that f is a C2

5 The complex Ginzburg–Landau equation is somewhat more complicated because in that case
P is a 2×2 matrix polynomial. But it is covered by our methods.
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function for which f(0)=0, and fŒ(0)=0. This implies that u=0 is an
unstable fixed point of (5.1). We also assume that

lim sup
|u|Q.

f(u)
u
< 0.

This assumption ensures global existence and regularity of the semiflow
(see ref. 2). (If uF is vector valued we impose lim sup||uF||Q. uF ·fF(u)/||uF||2 < 0.)
Define

s=sup
u

f(u)
u
.

This is a finite positive quantity from the above assumptions (if uF is vector
valued we define it as the sup of uF ·fF(u)/||uF||2.) Note that one can have
s > fŒ(0), and if this happens Aronson and Weinberger (1) showed that
the minimal speed is bounded above by `4s, when P(ik)=−k2. In this
section we show that the same result can be recovered for this, and many
other equations using the methods of Section 4, again without any recourse
to the maximum principle.
In this case, Eq. (4.7) becomes

G(b)=Q(b)+s,

where Q is given by

Q(b)=sup
kb*
Re P(−b+ikgb)

where the kgb are the solutions of

d Re P(−b+ik)
dk
:
k=kb*
=0.

The remainder of the proof is the same, except that in (4.5) the term
− exp(−2b(x−t)) v4 is replaced by

eb(x−t)vf(e−b(x−t)v) [ sv2

After this modification the proof proceeds as before.

APPENDIX A: THE DETERMINATION OF THE CRITICAL SPEED

Let P be a real polynomial for which Re P(ik) diverges to −. as
|k|Q. and Im P(ik) is of lower order. In the case of SH, we have
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P(z)=E2−(1+z2)2. For b > 0 we consider P(−b+ik), take the real part
and look for an extremum in k. In other words, we solve

d Re P(−b+ik)
dk

=0,

in the unknown k. Since P is analytic, one can write this as

0=Im 1dP(z)
dz
:
z=−b+ik

2 . (A.1)

For each b we find solutions kgb. The velocity c
g
b is related to the critical

value of P in (A.1) by

cgb=sup
kb*
Re P(−b+ikgb)/b. (A.2)

Then, the minimal speed is

cg= inf
b ¥ (0,.]

cgb,

which is determined by (A.3). To simplify the discussion, we will assume
from now on that for all kgb one obtains the same critical value. This is the
case for the Ginzburg–Landau and Swift–Hohenberg equations.
Note that there is at least one bg solving

“b(Re P(−b+ik
g
b)/b)|b=b

*
=0, (A.3)

for which cg=c
g
b
*
.

In the approach of ref. 5 the authors consider w0(k)=−P(ik). They
determine k̄(c) ¥ C by

(dw0/dk̄)|k=k̄(c)=ic, (A.4)

and then cg ¥ R by the condition

Re(w(k̄(cg))− ik̄(cg) cg)=0. (A.5)

To compare the two approaches, note that P(−b+ik)=−w0(k+ib).
Clearly the equations (A.2) and (A.5) are equivalent. To see that (A.1) and
(A.4) say the same thing, note that since c is real one has

Im(PŒ(z))=Re(−w −0(−iz))=Re(−w
−

0(−iz)+ic). (A.6)
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In particular, if w0 is an even function, the relation Re(w
−

0(k̄)− ic)=0 is
equivalent to requiring w −0(k̄)=ic, which is (A.4). Using (A.6), we conclude
that the solution k̄ of w −0(k̄)=ic of ref. 5 is the same as −i times the solu-
tion z of Im(PŒ(z))=0, which is (A.1). Therefore k̄=kgb

*
+ibg. Finally, to

find cgb
*
one can solve

0=Re(P(−bg+ik
g
b
*
)−bgc

g
b
*
)=Re(−w0(k

g
b
*
+ibg)− ic

g
b
*
(kgb

*
+ibg))

=Re(−w0(k̄)− ic
g
b
*
k̄).

Remark. The same kind of calculation can be done for multi-com-
ponent problems (such as reaction diffusion), where P would be a matrix.

The Example of the SH Equation. In this case

P(z)=E2−(1+z2)2,

and so

w0(k)=−P(ik)=−E2+(1−k2)2.

In ref. 5, it is found that

k̄=k̄1+ik̄2,

k̄2=
``1+6E2−1

12
=
E2

4
+· · · ,

k̄1=1+3k̄
2
2,

cg=8k̄2(1+4k̄
2
2)=4E+·· · .

(A.7)

In our formulation, we find

P(−b+ik)=E2−(1+(ik−b)2)2.

The real part of the derivative w.r.t. k yields

dRe P(−b+ik)
dk

=4k−4k3+12kb2.

The solutions of d Re P(−b+ik)/dk=0 are kgb=± `1+3b
2 (and kgb=0

which leads to less stringent bounds). Substituting back into Re P, we get

Re P(−b+ikgb)=E
2+4b2+8b4,
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which is what we announced in (1.6) and got as a result of integration by
parts in Eqs. (4.5)–(4.7). Solving now

Re P(−b+ikgb)−cb=0,

for c=cgb leads to c
g
b=(E

2+4b2+8b4)/b. To find the absolutely minimal
speed, we find that b for which cgb is extremal, that is “bc

g
b=0. The only

positive solution is

bg=
`3`1+6E2−3

6
,

and hence,

cgb
*
=
4(`1+6E2−1+6E2)

3`3`1+6E2−3
.

This quantity is the same as infb ¥ R cb where cb is given by (1.7).
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